Skip to main content

High Speed Cutting

Der Begriff Hochgeschwindigkeitszerspanung (HGZ) (englisch High Speed Cutting (HSC)) bezeichnet in der Metallverarbeitung mit CNC-Fräsmaschinen ein Zerspanungsverfahren, bei dem die Schnittgeschwindigkeit durch extrem hohe Werkzeugdrehzahlen sowie die Vorschubgeschwindigkeiten um ein Vielfaches höher, die sich daraus ergebene Spandicke jedoch wesentlich geringer ist als bei normalen Zerspanungen.

Geschichte

Schon 1931 beschäftigte sich Salomon mit hohen Schnittgeschwindigkeiten und meldete ein Patent[1] an, in dem er aufzeigte, dass nach dem parabolischen Anstieg der Schnitttemperatur mit steigender Schnittgeschwindigkeit die Temperatur bei Erreichen des Scheitelpunkts trotz Erhöhung der Geschwindigkeit wieder fällt. Demnach wäre es möglich, beispielsweise Stahl bei einer Schnittgeschwindigkeit ab 45.000 m/min mit gewöhnlichen Werkzeugen aus Schnellarbeitsstahl ohne Schädigung der Schneiden zu spanen. Experimentell hat Salomon dies jedoch nie nachgewiesen. Erst in den 50er Jahren wurde Salomons Theorie in der damaligen Sowjetunion sowie bei Lockheed in den USA im Wesentlichen bestätigt. Bei Lockheed etwa wurde Stahl mit einer Schnittgeschwindigkeit zwischen 40.000 und 50.000 m/min in translatorischer Schnittrichtung unter Verwendung von HSS-Werkzeugen bearbeitet.

Die wichtigsten Ergebnisse bei Untersuchungen mit ultrahohen Schnittgeschwindigkeit bis 60.000 m/min lassen sich in vier Punkten zusammenfassen: Die HSS-Werkzeuge haben die hohen Belastungen unbeschadet überstanden, der Werkzeugschneidenverschleiß war sehr gering, die erreichten Oberflächenqualitäten waren gut und die Zeitspanvolumina übertrafen konventionelle Verfahren um den Faktor 240.[2]

Die in den Versuchen angewandten Geschwindigkeiten sind bei der heutigen Hochgeschwindigkeitsbearbeitung im industriellen Umfeld noch lange nicht möglich, jedoch bilden die Ergebnisse die Grundlage des Spanens mit hohen Geschwindigkeiten. So liegen die erreichten Geschwindigkeiten heute bei Aluminium etwa um 5000 m/min, bei Stahl um 2000 m/min oder bei Kunststoff um 8000 m/min.

Erste Anwendung fand das HSC in der Luftfahrtindustrie. Zur Herstellung der für die Luftfahrt typischen Leichtbauteile wie beispielsweise Spanten ist eine extremer Zerspanaufwand erforderlich. So erreichen die Zerspankosten mancher Bauteile über 90 % der Gesamtbauteilkosten. Hinsichtlich dieser Problematik war eine wesentliche Kostenreduktion nur in der formgebenden Fertigung möglich. Als Alternative zur spanabhebenden Formung konnte sich wegen der oft nur geringen Stückzahlen oder fertigungstechnischer Probleme das Umformen bzw. Urformen nicht etablieren.

Anwendungsgebiete

Die Anwendungsgebiete der HSC-Technologie liegen vor allem dort, wo hohe Anforderungen an Zerspan-Leistung und Oberflächenqualität gestellt werden, also insbesondere im Werkzeug- und Formenbau. Eine weitere typische Anwendung im Formenbau mit komplexen dreidimensionalen Konturen sind z. B. Blasformen für Kunststoffflaschen. Durch Design, definierte Füllmenge und Anforderungen der Blasanlagen sind hier höchste Genauigkeiten und Oberflächengüten erforderlich.

Vor- und Nachteile

Vorteile

Das Besondere von HSC sind ein um bis zu 30 % höheres Zeitspanvolumen, 5 bis 10 mal höhere Vorschubgeschwindigkeiten und bis um das 30-fache geringere Schnittkräfte. Dies ermöglicht die Bearbeitung dünnwandiger Werkstücke. Die Oberflächenqualität steigt, was eine Einsparung ansonsten nachfolgender Schleifoperationen bewirken kann. Ein Verzug durch Erwärmung beim Zerspanungsprozess wird auch verhindert, weil die Schnittgeschwindigkeit größer ist als die Wärmeleitgeschwindigkeit und dadurch die Wärme im Span bleibt.

Es können gehärtete Materialien bis zu einer Härte von 62HRC bearbeitet werden, wodurch in den meisten Fällen das Härten nach der Fräsbearbeitung und damit auch die Gefahr des Härteverzugs entfällt.

Große Einsparpotentiale gegenüber konventioneller Fertigung liegen sowohl im Vorschruppen (durch hohe Zerspanleistung) als im Schlichten (durch hohe Oberflächengüte).

Nachteile

Bei High Speed Cutting entsteht durch die extremen Drehzahlen ein erheblich erhöhter Abschirmungsbedarf für den Arbeitsraum da bereits kleinste Bruch- oder Span-Stücke enorme Fluggeschwindigkeiten entwickeln können, die unter Umständen die von Projektilen aus Schusswaffen übersteigt. Weiter ergibt sich eine höhere Abnutzung des Werkzeuges und somit eine Standzeitverringerung, die jedoch durch das gesteigerte Zeitspanvolumen relativiert wird. Hohe Anforderungen werden auch an die Auswuchtung der Werkzeuge gestellt, da sonst extreme Kräfte entstehen, die einerseits zum Werkzeugbruch führen können und andererseits die Spindellagerung stark belasten würden. Aufgrund der extremen Drehzahlen und Belastungen an der Arbeitsspindel ist auch eine teure und aufwendige Wartung und ein regelmäßiger Austausch der Arbeitsspindel wegen des verhältnismäßig hohen Verschleißes notwendig. Für jede neue Werkstückgeometrie ist auch eine neue Bearbeitungsstrategie notwendig.

Werkzeuge

Fräser, die für HSC geeignet sind, sind üblicherweise aus fein- und feinstkörnigem Vollhartmetall, meistens mit einem Hartstoff beschichtet und weisen eine spezielle Schneidengeometrie auf.

Die hohe Oberflächengüte wird durch Bearbeiten der Konturen mit Kugelfräsern bei kleinen Abständen der Fräserbahnen (im Bereich weniger hundertstel Millimeter) erreicht. Zum Schruppen werden dagegen vorwiegend Werkzeuge mit Eckradius eingesetzt. Häufig finden gewendelte Fräser Anwendung. Für spezielle Fertigungsaufgaben sind verschiedenste Formfräser einsetzbar.

Daneben finden als Schneidstoffe auch Polykristallines kubisches Bornitrid und PKD Anwendung.

 
Quelle: wikipedia®